Circulant Graphs, J(v,k,i) Graphs, and Homomorphisms

Two nice families and a novel look at graph colorings
Circulant Graphs

How to make nice graphs: (a first try)...

1. Start with \mathbb{Z}_n. (verts)
2. Choose $C \subseteq \mathbb{Z}_n$.
3. Put $a \sim b$ iff $a - b \in C$.

Call the graph $X(\mathbb{Z}_n,C)$. Observe:
 -- Need C inverse closed: else (3) isn’t “iff”.
 (or X is directed)
 -- Need C not to have 0: else we get loops.

Def. If $C \subseteq \mathbb{Z}_n \setminus \{0\}$ is inverse closed, then $X(\mathbb{Z}_n,C)$ is called a **circulant graph**.

Observe:
 Send x to $-x$: automorphism!
 Send x to $x+k$: automorphism!

Consequence:
 D_n is subgroup of $\text{Aut}(X)$.

... when is $X(\mathbb{Z}_n,C)$ connected?

The graph $X(\mathbb{Z}_8,C)$ where $C = \{1, 7, 2, 6\}$
Def. Suppose X,Y are graphs. A function f: V(X)→V(Y) is a **homomorphism** whenever

\[u \sim v \text{ in } X \quad \text{implies} \quad f(u) \sim f(v) \text{ in } Y. \]

Notice:

1. No assumption f is 1-1 or onto (clearly).
2. This is NOT an “if and only if”.
3. If \(u \sim v \), then \(f(u) \neq f(v) \).

- This means \(f(u) \) and \(f(v) \) can be adjacent, even if \(u,v \) are not.
- “Edges must land on edges.”
Example. The following is a homomorphism from C_8 to the ‘House’ graph H shown below:
Example. If X is any bipartite graph, there exists a homomorphism from X to K_2:

\[\begin{array}{c|cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array} \]
Graph Colorings

- A **k-coloring** of a graph X is a function $f: V(X) \rightarrow \{1, 2, 3, \ldots, k\}$.

- We say f is **proper** whenever:

 $$u \sim v \quad \text{implies} \quad f(u) \neq f(v).$$

- The **chromatic number** χ denotes the minimum k such that there exists a proper k-coloring.

Quick Check: Find χ for these:
Graph Colorings

Does there exist a homomorphism $P \to C_4$?
Easy Fact:

“Proper k-colorings” are equivalent to “homomorphisms to K_k.”

Why:

Send vertices colored “j” to vertex “j” in K_k.

- Color classes are independent sets, so they can be sent to one vertex. All edges go between color classes, so they will safely land on edges in K_k.
- Conversely, pre-images of vertices in K_k are independent, so they can share a color.
Homomorphisms $X \rightarrow X$

A few things to notice:

- An isomorphism is \textit{not} merely a bijective homomorphism.
- Compositions of homomorphisms are homomorphisms.

\textbf{Def.} A homomorphism from X to X is called an \textit{endomorphism}.

- The set of all these is NOT a group (inverses?).
- It’s a \textit{monoid} [set w/assoc binary operation and identity].

Fun with a monoid!

- find all endomorphisms
- name them
- make an operation table
- have fun!
Def. If an endomorphism of X is the identity function on its image, we call it a **retraction**. We call the subgraph induced on the image a **retract** of X.

Is the square a retract of the cube?

... is C_5 a retract of the Petersen graph?
How to make nice graphs: (a different trick)…

1. Choose integers \(v \geq k \geq i \geq 0 \).
2. Start with all \(k \)-sets in a \(v \)-set
3. Put \(a \sim b \) iff \(a,b \) intersect in \(i \) elts.

Call the graph \(J(v,k,i) \). At first glance, this graph looks kind of ugly.

But… note that any permutation of the set \(\{1, 2, 3, 4, 5\} \) is an automorphism.

So this graph has at least \(5! = 120 \) automorphisms!

Lem. 1.6.2 says \(\text{Aut}[J(v,k,i)] \) always has a subgroup isomorphic to \(\text{Sym}(v) \).

…why should they have required \(k \neq 0,v \)?
Combinatorial Graphs $J(v,k,i)$

Note that the complement of $J(5,2,1)$ is actually $J(5,2,0)$. (why?)

Rather than valency 6, this new graph has valency 3 (cubic).

If we start with the permutation $(1,2,3,4,5)$ then we see that it sends:

13 \rightarrow 24 \rightarrow 35 \rightarrow 14 \rightarrow 25 \rightarrow 13
and
12 \rightarrow 23 \rightarrow 34 \rightarrow 45 \rightarrow 15 \rightarrow 12

which we can use to place the vertices into 2 concentric circles and get a better drawing…

Graph drawing is an important topic!
In fact, $J(5,2,0)$ is the Petersen graph!

When $i=0$, the graphs $J(v,k,i)$ are called the Kneser graphs. When $i=k-1$, they are called the Johnson graphs.

With $J(v,k,i)$ graphs, we typically assume that $v \geq 2k$ because there are some obvious isomorphisms among some of the $J(v,k,i)$. Namely…

Lem. $J(v,k,i) \cong J(v, v-k, v-2k+i)$.

proof. Take complements of the k-sets. (check that this works as advertised!)

The graph $J(5,2,0)$, and complement of $J(5,2,1)$.
Unlocking more of Ch.1 HW

After working through Sections 1.4-1.6, the following exercises in Ch.1 are likely to be accessible:

4, 5, 6, 7, 8, 18

(Recall the plan is to collect 8 problems from each chapter. This chapter has 8 sections and 26 exercises in total.)
Extension #1

Some further thoughts about circulant graphs:

– When is $X(\mathbb{Z}_n, C)$ connected?
– How does n affect the # of options for C such that X is connected?
– Can we generalize beyond circulant graphs by substituting other finite groups G for \mathbb{Z}_n in this construction? How would that work?
Further thoughts about homomorphisms:

– Recall that ‘isomorphism’ does not equal ‘bijective homomorphism’. Why?
– Is an automorphism the same as a bijective endomorphism?
– Explore the endomorphism monoid of some small graph(s). Look at the operation table and look for submonoids, etc.
Further thoughts:

– Is C_5 a retract of P?
– When is a cycle C_n a retract of a graph?
– When, if ever, is the complement of a Kneser graph a Johnson graph?