Linear Extensions of LYM Posets

Ewan Kummel
Preliminaries

- A binary relation \leq on a set P is defined to be a **partial order** on P when \leq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \leq) as the **partially ordered set**, or **poset**, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \leq Y$ or $Y \leq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection $\varepsilon : P \rightarrow Q$ is a **linear extension** of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.
A binary relation \(\preceq \) on a set \(P \) is defined to be a **partial order** on \(P \) when \(\preceq \) is reflexive, transitive, and antisymmetric.

We will refer to the pair \((P, \preceq) \) as the **partially ordered set**, or **poset**, \(P \).

The relation is a **total order** if \(X \) and \(Y \in P \) implies that \(X \preceq Y \) or \(Y \preceq X \).

A map \(\sigma \) from a poset \(P \) to a poset \(Q \) is **order preserving** if, for each \(X \) and \(Y \in P \), \(X \preceq_P Y \) implies that \(\sigma(X) \preceq_Q \sigma(Y) \).

An order preserving bijection \(\varepsilon : P \rightarrow Q \) is a **linear extension** of \(P \) if \(Q \) is totally ordered.

Two posets are isomorphic if there is an invertible, order preserving, bijection between them.
A binary relation \preceq on a set P is defined to be a **partial order** on P when \preceq is reflexive, transitive, and antisymmetric.

We will refer to the pair (P, \preceq) as the **partially ordered set**, or **poset**, P.

The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.

A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \preceq_P Y$ implies that $\sigma(X) \preceq_Q \sigma(Y)$.

An order preserving bijection $\varepsilon : P \rightarrow Q$ is a **linear extension** of P if Q is totally ordered.

Two posets are isomorphic if there is an invertible, order preserving, bijection between them.
A binary relation \(\preceq \) on a set \(P \) is defined to be a **partial order** on \(P \) when \(\preceq \) is reflexive, transitive, and antisymmetric.

We will refer to the pair \((P, \preceq) \) as the **partially ordered set**, or **poset**, \(P \).

The relation is a **total order** if \(X \) and \(Y \in P \) implies that \(X \preceq Y \) or \(Y \preceq X \).

A map \(\sigma \) from a poset \(P \) to a poset \(Q \) is **order preserving** if, for each \(X \) and \(Y \in P \), \(X \preceq_P Y \) implies that \(\sigma(X) \preceq_Q \sigma(Y) \).

An order preserving bijection \(\varepsilon: P \rightarrow Q \) is a **linear extension** of \(P \) if \(Q \) is totally ordered.

Two posets are isomorphic if there is an invertible, order preserving, bijection between them.
A binary relation \leq on a set P is defined to be a **partial order** on P when \leq is reflexive, transitive, and antisymmetric.

We will refer to the pair (P, \leq) as the **partially ordered set**, or **poset**, P.

The relation is a **total order** if X and $Y \in P$ implies that $X \leq Y$ or $Y \leq X$.

A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.

An order preserving bijection $\varepsilon : P \rightarrow Q$ is a **linear extension** of P if Q is totally ordered.

Two posets are isomorphic if there is an invertible, order preserving, bijection between them.
A binary relation \leq on a set P is defined to be a **partial order** on P when \leq is reflexive, transitive, and antisymmetric.

We will refer to the pair (P, \leq) as the **partially ordered set**, or **poset**, P.

The relation is a **total order** if X and $Y \in P$ implies that $X \leq Y$ or $Y \leq X$.

A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.

An order preserving bijection $\varepsilon : P \rightarrow Q$ is a **linear extension** of P if Q is totally ordered.

Two posets are isomorphic if there is an invertible, order preserving, bijection between them.
A Linear Extension

The poset \mathcal{B}^3
A Linear Extension

The poset B^3
A Linear Extension

The poset \mathcal{B}^3
A Linear Extension

The poset B^3
A Linear Extension

The poset B^3
A Linear Extension

The poset \mathcal{B}^3
A Linear Extension

The poset B^3
Let $E(P)$ be the set of linear extensions of P. If P is finite then $E(P)$ is finite.

We define $e(P)$ to the the size of $E(P)$.

A trivial upper bound is

$$e(P) \leq |P|!$$

(The right hand side counts the number of total orderings of the set P.)
Counting The Linear Extensions of a Finite Poset

- Let $E(P)$ be the set of linear extensions of P. If P is finite then $E(P)$ is finite.

- We define $e(P)$ to the the size of $E(P)$.

A trivial upper bound is

$$e(P) \leq |P|!$$

(The right hand side counts the number of total orderings of the set P.)
Counting The Linear Extensions of a Finite Poset

- Let $E(P)$ be the set of linear extensions of P. If P is finite then $E(P)$ is finite.

- We define $e(P)$ to the the size of $E(P)$.

A trivial upper bound is

$$e(P) \leq |P|!$$

(The right hand side counts the number of total orderings of the set P.)
Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an **order ideal** if for each $X \in Q$, $Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.
Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an **order ideal** if for each $X \in Q$, $Y \leq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \leq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \leq Y$ or $Y \leq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \leq Y$ nor $Y \leq X$.
Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an **order ideal** if for each $X \in Q$, $Y \leq X$ implies $Y \in Q$ for all $Y \in P$.

- Q is a **filter** if for each $X \in Q$, $X \leq Y$ implies $Y \in Q$ for all $Y \in P$.

- Q is a **chain** if for each X and $Y \in Q$ either $X \leq Y$ or $Y \leq X$.

- Q is an **antichain** if for each X and $Y \in Q$ neither $X \leq Y$ nor $Y \leq X$.
Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an **order ideal** if for each $X \in Q$, $Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.
The Boolean Lattice \mathcal{B}^5
The Boolean Lattice \mathcal{B}^5
The Boolean Lattice \mathcal{B}^5
Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_1, X_2, \ldots, X_{|P|}$ so that $X_i \preceq \varepsilon X_j$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.

- Letting $O_i = \{X_1, X_2, \ldots, X_i\}$ we can construct a sequence of order ideals $O_1, O_2, \ldots, O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.

- Given an ideal O of P, we define the map a by

 \[a(O) = \min \{P - O\} \]

 $a(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P.

- This allows us to translate the sequence of ideals $O_1, O_2, \ldots, O_{|P|}$ into a sequence of antichains $a(O_1), a(O_2), \ldots, a(O_{|P|})$. This sequence also uniquely characterizes ε.
Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_1, X_2, \ldots, X_{|P|}$ so that $X_i \preceq \varepsilon X_j$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.

- Letting $O_i = \{X_1, X_2, \ldots, X_i\}$ we can construct a sequence of order ideals $O_1, O_2, \ldots, O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.

- Given an ideal O of P, we define the map α by

$$\alpha(O) = \min\\{P - O\}.$$

$\alpha(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P.

- This allows us to translate the sequence of ideals $O_1, O_2, \ldots, O_{|P|}$ into a sequence of antichains $\alpha(O_1), \alpha(O_2), \ldots, \alpha(O_{|P|})$. This sequence also uniquely characterizes ε.
Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_1, X_2, ..., X_{|P|}$ so that $X_i \preceq \varepsilon X_j$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.

- Letting $O_i = \{X_1, X_2, ..., X_i\}$ we can construct a sequence of order ideals $O_1, O_2, ..., O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.

- Given an ideal O of P, we define the map α by

$$\alpha(O) = \min \{P - O\}.$$

$\alpha(O)$ is always an antichain, called the **choice antichain** of O. This map establishes a bijection between the order ideals of P and the antichains of P.

- This allows us to translate the sequence of ideals $O_1, O_2, ..., O_{|P|}$ into a sequence of antichains $\alpha(O_1), \alpha(O_2), ..., \alpha(O_{|P|})$. This sequence also uniquely characterizes ε.

Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_1, X_2, \ldots, X_{|P|}$ so that $X_i \preceq_{\varepsilon} X_j$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.

- Letting $O_i = \{X_1, X_2, \ldots, X_i\}$ we can construct a sequence of order ideals $O_1, O_2, \ldots, O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.

- Given an ideal O of P, we define the map α by

\[
\alpha(O) = \min \{P - O\}.
\]

$\alpha(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P.

- This allows us to translate the sequence of ideals $O_1, O_2, \ldots, O_{|P|}$ into a sequence of antichains $\alpha(O_1), \alpha(O_2), \ldots, \alpha(O_{|P|})$. This sequence also uniquely characterizes ε.
The Choice Antichain

- Intuitively, the choice antichain of O is the set of every element X of $P - O$ so that the set

$$O \cup \{X\}$$

is also an ideal of P.

For the first given linear extension of B^3, we have the following sequences:

<table>
<thead>
<tr>
<th>X_i</th>
<th>O_i</th>
<th>$a(O_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${1, 2, 3}$</td>
</tr>
<tr>
<td>${1}$</td>
<td>${\emptyset, {1}}$</td>
<td>${2, 3}$</td>
</tr>
<tr>
<td>${2}$</td>
<td>${\emptyset, {1}, {2}}$</td>
<td>${3, {1,2}}$</td>
</tr>
<tr>
<td>${3}$</td>
<td>${\emptyset, {1}, {2}, {3}}$</td>
<td>${1,2, {1,3}, {2,3}}$</td>
</tr>
<tr>
<td>${1,2}$</td>
<td>${\emptyset, {1}, {2}, {3}, {1,2}}$</td>
<td>${1,3, {2,3}}$</td>
</tr>
<tr>
<td>${1,3}$</td>
<td>${\emptyset, {1}, {2}, {3}, {1,2}, {1,3}}$</td>
<td>${2,3}$</td>
</tr>
<tr>
<td>${2,3}$</td>
<td>${\emptyset, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}$</td>
<td>${1,2,3}$</td>
</tr>
<tr>
<td>${1,2,3}$</td>
<td>B^3</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
The Choice Antichain

- Intuitively, the choice antichain of O is the set of every element X of $P - O$ so that the set

$$O \cup \{X\}$$

is also an ideal of P.

For the first given linear extension of B^3, we have the following sequences:

<table>
<thead>
<tr>
<th>X_i</th>
<th>O_i</th>
<th>$\alpha(O_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${\emptyset}$</td>
<td>${{1}, {2}, {3}}$</td>
</tr>
<tr>
<td>${1}$</td>
<td>${\emptyset, {1}}$</td>
<td>${{2}, {3}}$</td>
</tr>
<tr>
<td>${2}$</td>
<td>${\emptyset, {1}, {2}}$</td>
<td>${{3}, {1,2}}$</td>
</tr>
<tr>
<td>${3}$</td>
<td>${\emptyset, {1}, {2}, {3}}$</td>
<td>${{1,2}, {1,3}, {2,3}}$</td>
</tr>
<tr>
<td>${1,2}$</td>
<td>${\emptyset, {1}, {2}, {3}, {1,2}}$</td>
<td>${{1,3}, {2,3}}$</td>
</tr>
<tr>
<td>${1,3}$</td>
<td>${\emptyset, {1}, {2}, {3}, {1,2}, {1,3}}$</td>
<td>${{2,3}}$</td>
</tr>
<tr>
<td>${2,3}$</td>
<td>${\emptyset, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}$</td>
<td>${{1,2,3}}$</td>
</tr>
<tr>
<td>${1,2,3}$</td>
<td>B^3</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A **rank function** on a poset P is a function $r : P \rightarrow \mathbb{N}$ such that

1. There is a minimal element $X_0 \in P$ so that $r(X_0) = 0$

and

2. $r(X) = r(Y) + 1$ whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of P.
- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k.
- The numbers $N_k = |P_k|$ are the **whitney numbers** of P.
A **rank function** on a poset P is a function $r : P \to \mathbb{N}$ such that

1. There is a minimal element $X_0 \in P$ so that $r(X_0) = 0$

and

2. $r(X) = r(Y) + 1$ whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of P.
- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k.
- The numbers $N_k = |P_k|$ are the **whitney numbers** of P.
Ranked Posets

- A **rank function** on a poset P is a function $r : P \longrightarrow \mathbb{N}$ such that

 1. There is a minimal element $X_0 \in \mathcal{P}$ so that $r(X_0) = 0$
 and

 2. $r(X) = r(Y) + 1$ whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of P.

- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k.

- The numbers $N_k = |P_k|$ are the **whitney numbers** of P.

A **rank function** on a poset P is a function $r : P \longrightarrow \mathbb{N}$ such that

1. There is a minimal element $X_0 \in P$ so that $r(X_0) = 0$

and

2. $r(X) = r(Y) + 1$ whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of P.

- For any subset Q of P, the set $\{X \in Q \mid r(X) = k\}$ is denoted by Q_k.

- The numbers $N_k = |P_k|$ are the **whitney numbers** of P.
A rank function on a poset P is a function $r : P \rightarrow \mathbb{N}$ such that

1. There is a minimal element $X_0 \in P$ so that $r(X_0) = 0$

and

2. $r(X) = r(Y) + 1$ whenever X covers Y.

Given any ranked poset P,

- the number $\max \{r(X)\}_{X \in P}$ is the rank of P.

- For any subset Q of P, the set $\{X \in Q \mid r(X) = k\}$ is denoted by Q_k.

- The numbers $N_k = |P_k|$ are the whiteny numbers of P.
The LYM Property

Let P be a rank n poset, with whitney numbers N_0, N_1, \ldots, N_n. P has the **LYM property** if for each antichain $A \in P$,

$$\sum_{k=0}^{n} \frac{|A_k|}{N_k} \leq 1.$$
The whitney number N_k of B^5 is the binomial coefficient $\binom{5}{k}$.

The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

So,

$$\sum_{k=0}^{5} \frac{|A_k|}{\binom{5}{k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$
The LYM Property

- The whitney number N_k of \mathcal{B}^5 is the binomial coefficient $\binom{5}{k}$.

- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

- So,

$$\sum_{k=0}^{5} \frac{|A_k|}{\binom{5}{k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$
The LYM Property

- The whitney number N_k of \mathcal{B}^5 is the binomial coefficient $\binom{5}{k}$.

- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

- So,

$$\sum_{k=0}^{5} \frac{|A_k|}{\binom{5}{k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$
The LYM Property

- The whitney number N_k of \mathcal{B}^5 is the binomial coefficient $\binom{5}{k}$.

- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

- So,

$$
\sum_{k=0}^{5} \frac{|A_k|}{\binom{5}{k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1
$$
The Boolean Lattice

Theorem

(The LYM Inequality) Let \mathcal{A} be an antichain in the Boolean Lattice \mathcal{B}^n and let \mathcal{A}_k be the set of all rank k nodes in \mathcal{A}. Then

$$\sum_{k=0}^{n} \frac{|\mathcal{A}_k|}{\binom{n}{k}} \leq 1.$$
\(B^n \) contains exactly \(n! \) maximal chains.

If \(X \in B^n \) and \(r(X) = k \) then \(X \) generates an ideal of rank \(k \) isomorphic to \(B^k \) and a filter of rank \(n - k \) isomorphic to \(B^{n-k} \). It follows that there are exactly \(k!(n-k)! \) maximal chains in \(B^n \) containing \(X \).

If \(\mathcal{A} \) is an antichain in \(B^n \) and then for each \(X \in \mathcal{A}_k \) there are exactly \(k!(n-k)! \) maximal chains in \(B^n \) containing \(X \).
The Boolean Lattice

\(\mathcal{B}^n \) contains exactly \(n! \) maximal chains.

If \(X \in \mathcal{B}^n \) and \(r(X) = k \) then \(X \) generates an ideal of rank \(k \) isomorphic to \(\mathcal{B}^k \) and a filter of rank \(n - k \) isomorphic to \(\mathcal{B}^{n-k} \). It follows that there are exactly \(k!(n-k)! \) maximal chains in \(\mathcal{B}^n \) containing \(X \).

If \(\mathcal{A} \) is an antichain in \(\mathcal{B}^n \) and then for each \(X \in \mathcal{A}_k \) there are exactly \(k!(n-k)! \) maximal chains in \(\mathcal{B}^n \) containing \(X \).
The Boolean Lattice

\(\mathcal{B}_n \) contains exactly \(n! \) maximal chains.

If \(X \in \mathcal{B}_n \) and \(r(X) = k \) then \(X \) generates an ideal of rank \(k \) isomorphic to \(\mathcal{B}_k \) and a filter of rank \(n - k \) isomorphic to \(\mathcal{B}_{n-k} \). It follows that there are exactly \(k!(n-k)! \) maximal chains in \(\mathcal{B}_n \) containing \(X \).

If \(\mathcal{A} \) is an antichain in \(\mathcal{B}_n \) and then for each \(X \in \mathcal{A}_k \) there are exactly \(k!(n-k)! \) maximal chains in \(\mathcal{B}_n \) containing \(X \).
The Boolean Lattice

Given any antichain A and any chain C of any poset P, $A \cap C$ contains at most 1 element.

Therefore, there are exactly

$$\sum_{k=0}^{n} |\omega_k| k!(n-k)!$$

maximal chains in B^n containing some member of A.
The Boolean Lattice

Given any antichain A and any chain C of any poset P, $A \cap C$ contains at most 1 element.

Therefore, there are exactly

$$\sum_{k=0}^{n} |A_k| k!(n-k)!$$

maximal chains in \mathbb{B}^n containing some member of A.
The Boolean Lattice

Since there are at most $n!$ maximal chains in B^n containing some member of \mathcal{A},

$$\sum_{k=0}^{n} |\mathcal{A}_k| \frac{k!(n-k)!}{n!} \leq 1.$$

Dividing through by $n!$ gives

$$\sum_{k=0}^{n} \frac{|\mathcal{A}_k|}{\binom{n}{k}} \leq 1.$$
The Boolean Lattice

Since there are at most \(n!\) maximal chains in \(B^n\) containing some member of \(A\),

\[
\sum_{k=0}^{n} |A_k| k!(n-k)! \leq n!.
\]

Dividing through by \(n!\) gives

\[
\sum_{k=0}^{n} \frac{|A_k|}{\binom{n}{k}} \leq 1.
\]

□
Probabilistic Arguments

We will be using a discrete probability distribution over $E(P)$ to get an upper bound on its size, $e(P)$.

- A function ρ from a finite set E to the interval $[0, 1]$ is a probability distribution over E if

$$\sum_{x \in E} \rho(x) = 1.$$

- A weight function on P is a function $w : \mathcal{P}[P] \to \mathbb{R}^+$ so that for every subset Q of P,

$$w(Q) = \sum_{X \in Q} w(X).$$

For each antichain A of P, the function $\rho_A : A \to \mathbb{R}$ defined by

$$\rho_A(X) = \frac{w(X)}{w(A)}$$

is a probability distribution over A.

Probabilistic Arguments

We will be using a discrete probability distribution over $E(P)$ to get an upper bound on its size, $e(P)$.

- A function ρ from a finite set E to the interval $[0, 1]$ is a **probability distribution** over E if

$$\sum_{x \in E} \rho(x) = 1.$$

- A **weight function** on P is a function $w : \mathcal{P}[P] \to \mathbb{R}^+$ so that for every subset Q of P,

$$w(Q) = \sum_{X \in Q} w(X).$$

For each antichain A of P, the function $\rho_A : A \to \mathbb{R}$ defined by

$$\rho_A(X) = \frac{w(X)}{w(A)}$$

is a probability distribution over A.
Probabilistic Arguments

We will be using a discrete probability distribution over $E(P)$ to get an upper bound on its size, $e(P)$.

- A function ρ from a finite set E to the interval $[0, 1]$ is a **probability distribution** over E if
 \[
 \sum_{x \in E} \rho(x) = 1.
 \]

- A **weight function** on P is a function $w : \mathcal{P}[P] \rightarrow \mathbb{R}^+$ so that for every subset Q of P,
 \[
 w(Q) = \sum_{X \in Q} w(X).
 \]

For each antichain A of P, the function $\rho_A : A \rightarrow \mathbb{R}$ defined by
 \[
 \rho_A(X) = \frac{w(X)}{w(A)}
 \]

is a probability distribution over A.
The Generalized Sha/Kleitman Bound

Theorem

Let P be a ranked poset and let w be a weight function on P. If $w(A) \leq 1$ for each antichain A of P then

$$e(P) \leq \frac{1}{\prod_{X \in P} w(X)}.$$
Define a procedure for generating linear extensions of P as follows:

\[
O_0 = \emptyset \\
O_{i+1} = O_i + \{X_i\}
\]

where X_i is chosen from $\alpha(O_i)$ with probability $\rho_{O_i}(X_i)$.

The process terminates after the $|P|$th step when $O_{|P|} = P$ and $\alpha(O_{|P|}) = \emptyset$. The generated sequence $O_1, O_2, \ldots, O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_1, O_2, \ldots, O_{|P|}$, characterizing a linear extension, the construction results in $O_1, O_2, \ldots, O_{|P|}$ only if the choice of X_i at the ith stage is exactly the single element of $O_{i+1} - O_i$.

Brightwell’s Proof
Define a procedure for generating linear extensions of P as follows:

\[
\begin{align*}
O_0 &= \emptyset \\
O_{i+1} &= O_i + \{X_i\}
\end{align*}
\]

where X_i is chosen from $\alpha(O_i)$ with probability $\rho_{O_i}(X_i)$.

The process terminates after the $|P|$th step when $O_{|P|} = P$ and $\alpha(O_{|P|}) = \emptyset$. The generated sequence $O_1, O_2, \ldots, O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_1, O_2, \ldots, O_{|P|}$, characterizing a linear extension, the construction results in $O_1, O_2, \ldots, O_{|P|}$ only if the choice of X_i at the ith stage is exactly the single element of $O_{i+1} - O_i$.
Define a procedure for generating linear extensions of P as follows:

\[
O_0 = \emptyset \\
O_{i+1} = O_i + \{X_i\}
\]

where X_i is chosen from $\alpha(O_i)$ with probability $\rho_{O_i}(X_i)$.

The process terminates after the $|P|$th step when $O_{|P|} = P$ and $\alpha(O_{|P|}) = \emptyset$. The generated sequence $O_1, O_2, ..., O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_1, O_2, ..., O_{|P|}$, characterizing a linear extension, the construction results in $O_1, O_2, ..., O_{|P|}$ only if the choice of X_i at the ith stage is exactly the single element of $O_{i+1} - O_i$.

Brightwell’s Proof
Brightwell’s Proof

For each partial sequence $O_1, O_2, \ldots, O_{i-1}$, the value $\rho_{O_i}(X_i)$ is exactly the probability that X_i is chosen at the ith stage of our construction given that $O_1, O_2, \ldots, O_{i-1}$ have already been constructed.

It follows that, for any linear extension ε of P, the probability that our construction produces ε is exactly

$$\mu(\varepsilon) = \prod_{i=1}^{|P|} \rho_{O_i}(X_i).$$

where the sequences $X_1, \ldots, X_{|P|}$ and $O_1, O_2, \ldots, O_{|P|}$ are defined as above. Therefore, μ is a probability distribution over the set $E(P)$ assigning non-zero probability to each element $\varepsilon \in E(P)$.
Brightwell’s Proof

For each partial sequence $O_1, O_2, \ldots, O_{i-1}$, the value $\rho_{O_i}(X_i)$ is exactly the probability that X_i is chosen at the ith stage of our construction given that $O_1, O_2, \ldots, O_{i-1}$ have already been constructed.

It follows that, for any linear extension ε of P, the probability that our construction produces ε is exactly

$$
\mu(\varepsilon) = \prod_{i=1}^{|P|} \rho_{O_i}(X_i).
$$

where the sequences $X_1, \ldots, X_{|P|}$ and $O_1, O_2, \ldots, O_{|P|}$ are defined as above. Therefore, μ is a probability distribution over the set $E(P)$ assigning non-zero probability to each element $\varepsilon \in E(P)$.
Brightwell’s Proof

By our assumptions, for any order ideal \(O \) and any \(X \in O \), we have

\[
\rho_O(X) = \frac{w(X)}{w(a(O))} \geq w(X).
\]

Since every element of \(P \) appears exactly once in the sequence \(X_1, \ldots, X_{|P|} \),

\[
\prod_{X \in P} w(X) \leq \prod_{i=1}^{|P|} \rho_{O_i}(X_i) = \mu(\varepsilon).
\]
Brightwell’s Proof

By our assumptions, for any order ideal O and any $X \in O$, we have

$$\rho_O(X) = \frac{w(X)}{w(a(O))} \geq w(X).$$

Since every element of P appears exactly once in the sequence $X_1, \ldots, X_{|P|}$,

$$\prod_{X \in P} w(X) \leq \prod_{i=1}^{|P|} \rho_{O_i}(X_i) = \mu(\varepsilon).$$
Finally, since

\[\sum_{\varepsilon \in E(P)} \mu(\varepsilon) = 1 \]

it follows that

\[e(P) \cdot \left(\prod_{X \in P} w(X) \right) = \sum_{\varepsilon \in E(P)} \left(\prod_{X \in P} w(X) \right) \leq \sum_{\varepsilon \in E(P)} \mu(\varepsilon) = 1. \]
Brightwell’s Proof

Corollary

If P *is an LYM poset with whitney numbers* $N_0, N_1, N_2, \ldots, N_n$ *then*

$$e(P) \leq \prod_{i=0}^{n} N_i^{N_i}.$$
Let \(w(X) = \frac{1}{N_r(X)} \), where \(r \) is the rank function on \(P \). Note that \(w \) is a weight function on \(P \).

If \(P \) is LYM, we have \(w(A) \leq 1 \) for every antichain \(A \) in \(P \).

Therefore, by the previous theorem,

\[
e(P) \leq \prod_{X \in P} \frac{1}{w(X)} = \prod_{X \in P} \frac{1}{N_r(X)} = \prod_{X \in P} N_r(X).
\]

Since for each \(i \), there are exactly \(N_i \) elements of \(P \) with rank \(i \), the corollary follows.
Brightwell’s Proof

Let \(w(X) = \frac{1}{N_r(X)} \), where \(r \) is the rank function on \(P \). Note that \(w \) is a weight function on \(P \).

If \(P \) is LYM, we have \(w(A) \leq 1 \) for every antichain \(A \) in \(P \).

Therefore, by the previous theorem,

\[
e(P) \leq \prod_{X \in P} w(X) = \prod_{X \in P} \frac{1}{N_r(X)} = \prod_{X \in P} N_r(X).
\]

Since for each \(i \), there are exactly \(N_i \) elements of \(P \) with rank \(i \), the corollary follows.
Let \(w(X) = \frac{1}{N_r(X)} \), where \(r \) is the rank function on \(P \). Note that \(w \) is a weight function on \(P \).

If \(P \) is LYM, we have \(w(A) \leq 1 \) for every antichain \(A \) in \(P \).

Therefore, by the previous theorem,

\[
e(P) \leq \frac{1}{\prod_{X \in P} w(X)} = \frac{1}{\prod_{X \in P} \frac{1}{N_r(X)}} = \prod_{X \in P} N_r(X).
\]

Since for each \(i \), there are exactly \(N_i \) elements of \(P \) with rank \(i \), the corollary follows.
Conclusion

- This bound is achieved by chains, but it is easy to see that it is not attained by any other poset.
- It is not asymptotic but for small values of n it is the best upper bound we have for \mathcal{B}^n.

<table>
<thead>
<tr>
<th>n</th>
<th>$\prod_{i=0}^{n} \binom{n}{i}!$</th>
<th>$e(\mathcal{B}^n)$</th>
<th>$\prod_{i=0}^{n} \binom{n}{i}(n)^i$</th>
<th>$2^n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>48</td>
<td>729</td>
<td>40320</td>
</tr>
<tr>
<td>4</td>
<td>4.15×10^5</td>
<td>1.680384×10^6</td>
<td>3.06×10^9</td>
<td>2.09×10^{13}</td>
</tr>
<tr>
<td>5</td>
<td>1.9×10^{17}</td>
<td>$1.480780403565735936 \times 10^{19}$</td>
<td>9.77×10^{26}</td>
<td>2.63×10^{35}</td>
</tr>
<tr>
<td>6</td>
<td>2.16×10^{18}</td>
<td>$1.413779111697227887117195970316200795630205476957716480 \times 10^{-53}$</td>
<td>4.38×10^{70}</td>
<td>1.72×10^{89}</td>
</tr>
<tr>
<td>7</td>
<td>7.08×10^{126}</td>
<td>?</td>
<td>2.81×10^{175}</td>
<td>3.86×10^{215}</td>
</tr>
<tr>
<td>8</td>
<td>9.15×10^{317}</td>
<td>?</td>
<td>2.78×10^{420}</td>
<td>8.58×10^{506}</td>
</tr>
</tbody>
</table>
Conclusion

- Using a very sophisticated probabilistic approach Brightwell and Tetali have published an asymptotic bound on $e(B^n)$ given by

$$e(B^n) \leq e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^{n} \left(\frac{n}{i} \right)!$$

- It first outdoes the Sha/Kleitman bound at $n = 18$ where

$$\prod_{i=0}^{n} \binom{n}{i} \approx 2.10 \times 10^{1173310}$$

and

$$e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^{n} \left(\frac{n}{i} \right)! \approx 1.58 \times 10^{1169187}.$$
Conclusion

- Using a very sophisticated probabilistic approach Brightwell and Tetali have published an asymptotic bound on $e(B^n)$ given by

$$e(B^n) \leq e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^{n} \binom{n}{i}!$$

- It first outdoes the Sha/Kleitman bound at $n = 18$ where

$$\prod_{i=0}^{n} \binom{n}{i}^{(n)} \approx 2.10 \times 10^{1173310}$$

and

$$e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^{n} \binom{n}{i}! \approx 1.58 \times 10^{1169187}.$$
References

M Aigner and G. Ziegler.
Proof’s from The Book.

G Brightwell.
The number of linear extensions of ranked posets.

G. Brightwell and P Tetali.
The number of linear extensions of the boolean lattice.

G Brightwell and P. Winkler.
Counting linear extensions.

D. J. Kleitman and J. Sha.
The number of linear extensions of subset ordering.